
Process ModelsLecture 4

Métodos de Desenvolvimento de Software
(MDS)

2016/2017

Vasco Amaral
vma@fct.unl.pt

The Software Process

◻ The set of activities and associated results which
produce a software product

◻ The sequence of steps required to develop and maintain
software

◻ Sets out the technical and management framework for
applying methods, tools and people to the software task

◻ Definition:
⬜ The Software Process is a description of the process

which guides software engineers as they work by
identifying their roles and tasks.

The Software Process

◻ Fundamental Process Activities
⬜ Software Specification
⬜ Software Development
⬜ Software Validation
⬜ Software Evolution

Software Process: Software
Specification (or requirements engineering)

◻ Understand and define what services are required from
the system and identify constraints to the system’s
operation and development

◻ Leads to a requirements document which is the
specification of the system
⬜ Customers and end-users get high level statements
⬜ System developers get the detailed system

specification

Software Process: Software
Specification (or requirements engineering)

Main phases:
◻ Feasibility Studies (leads to feasibility report)
◻ Requirements Elicitation and Analysis (may develop

System Model and prototypes)
◻ Requirements Specification (leads to User and system

requirements document)
◻ Requirements Validation (checks realism,consistency

and completeness)

Software Process: Design and
implementation

◻ Architectural Design
◻ Abstract Specification
◻ Interface Design
◻ Component Design
◻ Data Structures Design
◻ Algorithm Design

Software Process: Software Validation

◻ Verification: are we building the system right?
⬜ Look at the system’s specification

◻ Validation : are we building the right system?
⬜ Meets the expectation of the customer

Stages:
◻ Component (or unit) Testing
◻ System Testing
◻ Acceptance Testing

Characteristics of a good process

◻ Understandability
◻ Visibility
◻ Supportability
◻ Acceptability
◻ Reliability
◻ Robustness
◻ Maintainability
◻ Rapidity

Steps in a Generic Software Process

◻ Project Definition
◻ Requirements Analysis
◻ Design
◻ Program Implementation
◻ Component Testing
◻ Integration Testing
◻ System Testing
◻ System Delivery
◻ Maintenance

Project Activities (1)

◻ Project Definition
⬜ States the purpose of the project
⬜ Makes initial decision on political and technical

feasibility of the project
◻ Requirements Analysis
⬜ High level definition of the functionality of the system,

primarily from the point of view of the users
◻ Design
⬜ Looks at the software requirements of the system and

the architecture of the system
⬜ Lower level design activities - data structures,

interface representations, procedural (algorithmic)
details

Process Activities (2)

◻ Program Implementation
⬜ Writing or generating the code to build the system

◻ Component Testing
⬜ Testing of the individual components while they are

being built and after they have been completed
◻ Integration Testing
⬜ Testing of the way individual components fit together

◻ System Testing
⬜ Testing of the whole system usually in concert with the

users (acceptance testing)

Process Activities(3)

◻ System Delivery
⬜ Implementation of the system into the working

environment and replacement of the existing system
◻ Maintenance
⬜ Corrective
⬜ Adaptive
⬜ Perfective

Software Process Model

◻ Is a simplified description of a software process that
presents one view of that process. Activities involve:
⬜ Workflow models
⬜ Dataflow or activity models
⬜ Role/action models

Rest of the Lecture Outline

◻ Traditional/Waterfall
◻ Incremental
◻ Prototyping
◻ Rapid Application Development (RAD)
◻ V-Model
◻ Evolutionary
⬜ Spiral
⬜ Component Assembly

◻ RUP and UML
◻ Agile Methods (e.g. XP)
◻ Formal Methods
◻ Fourth Generation Techniques

Prescriptive Models

The Waterfall Model
Project

Definition

System
Delivery

Maintenance

Requirements
Analysis

Design

Component
Testing

Integration
Testing

System
Testing

Program
Implementation

Waterfall Model - Plan driven

◻ Most widely used, though no longer state-of-the-art
◻ Each step results in documentation
◻ May be suitable for well-understood developments using

familiar technology
◻ Not suited to new, different systems because of

specification uncertainty
◻ Difficulty in accommodating change after the process

has started
◻ Can accommodate iteration but indirectly
◻ Working version not available till late in process
◻ Often get blocking states

Waterfall Model

◻ However, it reflects the type of process model used
in other engineering approaches

◻ Is still used when the software project is part of a
larger system engineering project

◻ Adequate to Embedded, Critical and Large Systems

Rapid Application Development

◻ Similar to waterfall but uses a very short
development cycle (60 to 90 days to
completion)

◻ Uses component-based construction and
emphasises reuse and code generation

◻ Use multiple teams on scalable projects
◻ Requires heavy resources
◻ Requires developers and customers who are

heavily committed
◻ Performance can be a problem
◻ Difficult to use with new technology

Rapid Application Development (RAD)

Testing and
turnover

Business
modelling

Data
modelling

Process
modelling

Applicatio
n

generation

Testing
and

turnover

Team 2 Team 3

Testing and
turnover

Business
modelling

Data
modelling

Process
modelling

Applicatio
n

generation

Testing
and

turnover

Team 1 Team 3

Testing and
turnover

Team 3

Testing and
turnover

Business
modelling

Data
modelling

Process
modelling

Applicatio
n

generation

Testing
and

turnover

Team 3 Team 3

Communicati
on

Planning

Delivery

Rapid Application Development (RAD)

◻ For large projects requires sufficient human resources to
create the right number of RAD teams

◻ If the system cannot be modularized, building the
components necessary for RAD will be problematic

◻ If high performance is an issue, requiring to tune the
several system components, it may not work

◻ It may not be appropriate when technical risks are high

Incremental Development

analysi
s

deliver
ydesign coding testing

analysi
s

deliver
ydesign coding testing

analysi
s

deliver
ydesign coding testing

analysi
s

deliver
ydesign coding testing

1st
Increment

2nd
Increment

3rd Increment

4th Increment

Project
Definition

V-Model

*taken from the wikipedia

V-Model

Pros:
● Minimizes project risks - due to the explicit concerns:

○ Verification (Am I doing things right?)
○ Validation (Am I doing the right thing?)

● Improvement and guarantee of quality
● reduction of total cost over the entire project and

systems life cycle

Cons:
Apart from the mentioned benefits it suffers from the same
problems of the watterfal model

Incremental Development

◻ Applies an iterative philosophy to the waterfall model
◻ Divide functionality of system into increments and use a

linear sequence of development on each increment
◻ First increment delivered is usually the core product, i.e

only basic functionality
◻ Reviews of each increment impact on design of later

increments
◻ Manages risk well
◻ Extreme Programming (XP), and other Agile Methods,

are incremental, but they do not implement the waterfall
model steps in the standard order

Incremental Process Model

◻ Combines elements of the waterfall applied iteratively
◻ Each linear sequence delivers deliverable operational

product increments
◻ The first increment is a core product where

requirements are met but supplementary features
remain undelivered

◻ Ideal when the staff is unavailable for a complete
implementation

◻ Increments can be planned to to manage technical risks

Incremental Process Model

◻ Positive:
○ Cost of implementing is reduced
○ easier to get customer feedback
○ early delivery and deployment of useful software

◻ Negative:
○ The process is not visible
○ system structure tends to degrade (Agile methods

propose to often refactor)

Evolutionary Process Models

◻ Exploratory development – work with the costumer to
explore their requirements and deliver a final product,
starting by the parts of the system that are understood.
New proposed features are added.

◻ Throwaway prototyping - help on better understand the
requirements and get a better requirements definition.
The prototype concentrates on poorly understood
requirements

Prototyping

◻ Specifying requirements is often very difficult
◻ Users don’t know exactly what they want until they see it
◻ Prototyping involves building a mock-up of the system

and using to obtain for user feedback
◻ Closely related to what are now called “Agile Methods”

Prototyping

Listen to
Customer

Build/Revise
Mock-up

Customer
test-drives
mock-up

Prototyping

◻ Ideally mock-up serves as mechanism for identifying
requirements

◻ Users like the method, get a feeling for the actual system
◻ Less ideally may be the basis for completed product
⬜ prototypes often ignore

quality/performance/maintenance issues
⬜ may create pressure from users on deliver earlier
⬜ may use a less-than-ideal platform to deliver e.g

Visual Basic - excellent for prototyping, may not be as
effective in actual operation

Prototyping

◻ The process is not visible – it is not cost effective to
produce documents that reflect every version of the
system

◻ Systems are often poorly structured – incorporating
changes becomes increasingly costly and difficult

◻ Not adequate for large, complex long-lived systems with
different teams developing different parts

◻ Difficult to establish a stable system architecture
◻ Usually should be used mixed together with waterfall:

evolutionary approaches for uncertainties in
specification (e.g. user interface) and waterfall for parts
well understood.

Process Iteration

◻ The specification is developed in conjunction with the
software

◻ There is no complete system specification until the final
increment is specified.

◻ Requires new form of contract that large costumers and
Government agencies may find difficult to
accommodate

The Spiral Model

◻ Development cycles through multiple (3-6) task regions
(6 stage version)
⬜ customer communication
⬜ planning
⬜ risk analysis
⬜ engineering
⬜ construction and release
⬜ customer evaluation

◻ Incremental releases
⬜ early releases may be paper or prototypes
⬜ later releases become more complicated

◻ Models software until it is no longer used

The Spiral Model

The Spiral Model

◻ Not a silver bullet, but considered to be one of the best
approaches

◻ Is a realistic approach to the problems of large scale
software development

◻ Can use prototyping during any phase in the evolution of
product

◻ Requires excellent management and risk assessment
skills

RUP – Rational Unified Process

◻ A framework for object-oriented Software Engineering
using UML

◻ Use-case driven, architecture-centric, iterative and
incremental software process

RUP - Phases

Best Practices

◻ Develop Software iteratively
◻ Manage Requirements
◻ Use Component Base Architectures
◻ Verify Software Quality
◻ Control changes to Software

To be continued…

